Influence of hydrodynamics on many-particle diffusion in 2D colloidal suspensions.

نویسندگان

  • E Falck
  • J M Lahtinen
  • I Vattulainen
  • T Ala-Nissila
چکیده

We study many-particle diffusion in 2D colloidal suspensions with full hydrodynamic interactions through a novel mesoscopic simulation technique. We focus on the behaviour of the effective scaled tracer and collective-diffusion coefficients DT(rho)/D0 and DC(rho)/D0 respectively, where D0 is the single-particle diffusion coefficient, as a function of the density of the colloids rho. At low Schmidt numbers Sc - 1, we find that hydrodynamics has essentially no effect on the behaviour of DT (rho)/D0. At larger Sc, DT (rho)/D0 seems to be enhanced at all densities, although the differences compared to the case without hydrodynamics are rather minor. The collective-diffusion coefficient, on the other hand, is much more strongly coupled to hydrodynamical conservation laws and is distinctly different from the purely dissipative case without hydrodynamic interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of collective diffusion in two-dimensional colloidal suspensions

We consider many-particle diffusion in 2D colloidal suspensions with hydrodynamic interactions within a mode-coupling approach. We focus on the behaviour of the effective scaled collective diffusion coefficient DC(ρ)/D0 as a function of the density of the colloids ρ, where D0 is the single-particle diffusion coefficient. We find that DC(ρ) is strongly coupled to hydrodynamical conservation laws...

متن کامل

Bridging Scales by Using Discrete-particles in Modeling Complex Fluids

Macroscopic phenomena can couple together with microscopic events creating complex feedback dynamics. When the changes in the microscale involved by macroscopic behavior : 1. can be modeled by downscaling of the macroscopic models, 2. follow assumed constitutive relations, 3. do not violate the assumptions of mass, momenta and energy continuity, then the continuum model can be regarded as a cro...

متن کامل

Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation.

Computer simulations of colloidal suspensions are discussed. The simulations are based on the Langevin equations, pairwise interaction between colloidal particles and take into account Brownian, hydrodynamic and colloidal forces. Comparison of two models, one taking into account inertial term in Langevin equation and another based on diffusional approximation proposed in [D.L. Ermak, J.A. McCam...

متن کامل

Rheology and dynamics of colloidal superballs.

Recent advances in colloidal synthesis make it possible to generate a wide array of precisely controlled, non-spherical particles. This provides a unique opportunity to probe the role that particle shape plays in the dynamics of colloidal suspensions, particularly at higher volume fractions, where particle interactions are important. We examine the role of particle shape by characterizing both ...

متن کامل

Mesoscale modeling of colloidal suspensions with adsorbing solutes.

We construct a mesoscale model of colloidal suspensions that contain solutes reversibly adsorbing onto the colloidal particle surfaces. The present model describes the coupled dynamics of the colloidal particles, the host fluid, and the solutes through the Newton-Euler equations of motion, the hydrodynamic equations, and the advection-diffusion equation, respectively. The solute adsorption is m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2004